A CAHN-HILLIARD TYPE EQUATION WITH GRADIENT DEPENDENT POTENTIAL* Yin Jingxue and Huang Rui
نویسنده
چکیده
Abstract We investigate a Cahn-Hilliard type equation with gradient dependent potential. After establishing the existence and uniqueness, we pay our attention mainly to the regularity of weak solutions by means of the energy estimates and the theory of Campanato Spaces.
منابع مشابه
Convergence of the One-Dimensional Cahn-Hilliard Equation
We consider the Cahn-Hilliard equation in one space dimension with scaling parameter ε, i.e. ut = (W ′(u) − εuxx)xx, where W is a nonconvex potential. In the limit ε ↓ 0, under the assumption that the initial data are energetically well-prepared, we show the convergence to a Stefan problem. The proof is based on variational methods and exploits the gradient flow structure of the Cahn-Hilliard e...
متن کاملThe existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملThe viscous Cahn - Hilliard equation . Part I : computations
The viscous Cahn-Hilliard equation arises as a singular limit of the phase-field model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global atUactor 4 comprising heteroclinic orbits between equilibria. Two classes of wmputati0n.m described,. First heteroclinic o&its on the global a...
متن کاملA Gamma-convergence approach to the Cahn–Hilliard equation
We study the asymptotic dynamics of the Cahn–Hilliard equation via the “Gamma-convergence” of gradient flows scheme initiated by Sandier and Serfaty. This gives rise to an H1-version of a conjecture by De Giorgi, namely, the slope of the Allen–Cahn functional with respect to the H−1-structure Gamma-converges to a homogeneous Sobolev norm of the scalar mean curvature of the limiting interface. W...
متن کاملReport on GPU solver for Fourier Pseudo-spectral method on Cahn-Hilliard equation
Numerical method for Cahn-Hilliard equation has been well-studied, but few can be generalized to fractional Cahn-Hilliard equation. In this project to modified the numerical method proposed by Brian Wetton et al in the paper High accuracy solutions to energy gradient flows from material science models[1]. The method they described in the paper is a pseudo-spectral method suitable for considerin...
متن کامل